Table of Contents

Chapter 5 - Trigonometric Equations


Sunday, 29 August 2021
2-minute read
331 words

5.3 Solving Trigonometric Equations

  1. Solve \(2\sin x - 1\)

\[ 2\sin x = 1 \]

\[ \sin x = \frac{1}{2} \]

\[ x = \frac{\pi}{6} + 2\pi k\]

  1. Solve \(\sin x + \sqrt{2} = -\sin x\)

\[ 2sin x = -\sqrt{2} \]

\[ sin x = -\frac{\sqrt{2}}{2} \]

\[ x = -\frac{\pi}{3} + 2\pi k \]

  1. Solve \(3\tan^2 x - 1 = 0\)

\[ \tan^2 x = \frac{1}{3} \]

\[ \tan x = \pm \frac{1}{\frac{3}} \]

Don't forget the plus/minus sign.

\[ x = \frac{\pi k}{6}, \textrm{for} k = 1, 5, 7, 11 \]

  1. Solve \(\cot x \cos^2 x = 2 \cot x\)

\[ \cos^2 x = \cot x \]

\[ \cot x \cos^2 x - 2 \cot x = 0 \]

\[ \cot x(\cos^2 x - 2) = 0 \]

\[ \cot x = 0, \cos^2x - 2 = 0 \]

\[ \cot x = 0, x = { \frac{\pi}{2}, \frac{2\pi}{2} } \]

\[ \cos^2x - 2 = 0, x = \emptyset \]

\[ x = { \frac{\pi}{2}, \frac{2\pi}{2} } \]

  1. Solve \(2\sin^2 x - \sin x - 1 = 0\)

\[ (\sin x - 1)(2\sin x + 1) \]

\[ \sin x = 1, x = \frac{\pi}{2} \]

\[ \sin x = -\frac{1}{2}, x = { \frac{7\pi}{6}, \frac{11\pi}{6} } \]

\[ x = { \frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6} } \]

5.4 Sum and Difference Identities

Sum and Difference Identities

\[ \sin(x \pm y) = \sin x \cos y \pm \cos x \sin y \] \[ \cos(x \pm y) = \cos x \cos y \mp \sin x \sin y \] \[ \tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} \]

Example

  1. Evaluate \(\cos75°\)

\[ \cos75° = \cos(120°-45°) = \cos120°\cos45° + sin120°sin45° \]

5.5 Multiple and Half Angle Identities

\[ \sin(2\theta) = \sin(\theta + \theta) \]

\[ = \sin\theta\cos\theta + \cos\theta\sin\theta \]

\[ = 2\sin\theta\cos\theta \]

\[ \sin(3\theta) = \sin(2\theta + \theta) = (2\sin\theta\cos\theta)\cos(\theta) + (1 - 2\sin^2\theta)\sin(\theta) \]

$$ sin(\frac{θ}{2}) = ± \sqrt{\frac{1 - cosθ}{2}}