Table of Contents

Chapter 7 - Matrices


Wednesday, 1 September 2021
4-minute read
843 words

Solving Systems of Equations

  1. Solving by graphing
  2. Solving by substitution
  3. Solving by elimination

Solving Multivariable Systems of Equations

  • Row-echelon form

Row Operations

  1. Interchange any two equations
  2. Multiply an equation by a non-zero constant
  3. Add an equation to another equation

Partial Fraction Decomposition

A rational expression can often be written as the sum of two or more simpler rational expressions (fractions).

Example

  1. \(\frac{x + 7}{x^2 - x - 6} = \frac{x + 7}{(x - 3)(x + 2)}\)

\[ \frac{A}{x - 3} + \frac{B}{x + 2} \]

\[ (\frac{x + 7}{(x - 3)(x + 2)} = \frac{A}{x - 3} + \frac{B}{x + 2})(x + 2) \]

\[ \frac{x + 7}{x - 3} = \frac{A(x + 2)}{x - 3} + B \]

Let \(x = -2\)

\[ B = \frac{-2 + 7}{-2 + 3} = 5 \]

  1. \(\frac{x - 3}{x^2 - 16}\)

\[ \frac{x - 3}{(x + 4)(x - 4)} \]

\[ \frac{} \]

Matrices

A matrix is a way of organizing mathematical data into rows and columns.

  • row — horizontal
  • column — vertical
  • element — a specific component of a matrix given by its location (e.g. \(a_{23}\) in row 2, column 3)
  • dimension — description of rows and columns

A 2x3-dimensional matrix \[ \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \]

Matrix Multiplication

When multiplying matrices \(A \cdot B = C\), an element \(e\) at \(C_{y,x}\) is the sum of the products of \(A\) at row \(y\) by its corresponding elements \(B\) at column \(x\).

Inverse of a Square Matrix

  • Two types of inverses in real numbers:

    • Additive inverse, called the opposite, \(x + y = 0\)
    • Multiplicative inverse, called the reciprocal, \(x \cdot y = 1\)

\[ \begin{bmatrix} A \end{bmatrix} \cdot \begin{bmatrix} A \end{bmatrix}^{-1} = \begin{bmatrix} I \end{bmatrix} \]

  • Identity matrix contains all ones in the main diagonal
  • All other elements must be zero
  • Not all matrices have inverses

    • Only square matrices are capable of having inverses
    • Square matrices that do not have inverses are known as singular or non-invertible

Examples

Given that \(AX = I\) where \(X = A^{-1}\)

\[ \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix}, \]

\[ \left[\begin{array}{rr|rr} 1 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{array}\right] \]

\[ \left[\begin{array}{rr|rr} 1 & 4 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right] \]

\[ \left[\begin{array}{rr|rr} 1 & 0 & -3 & -4 \\ 0 & 1 & 1 & 1 \end{array}\right] \]

What we have on the right hand side is the matrix \(\begin{bmatrix} X \end{bmatrix}\)

Algorithm to Solve

\[ \left[\begin{array}{cc|cc} a & b & 1 & 0 \\ c & d & 0 & 1 \end{array}\right] \]

\[ \left[\begin{array}{cc|cc} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ c & d & 0 & 1 \end{array}\right] \]

\[ \left[\begin{array}{cc|cc} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 0 & \frac{ad - bc}{a} & -\frac{c}{a} & 1 \end{array}\right] \]

\[ \left[\begin{array}{cc|cc} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 0 & 1 & -\frac{c}{ad - bc} & \frac{a}{ad - bc} \end{array}\right] \]

\[ \left[\begin{array}{cc|cc} 1 & 0 & \frac{d}{ad - bc} & -\frac{b}{ad - bc} \\ 0 & 1 & -\frac{c}{ad - bc} & \frac{a}{ad - bc} \end{array}\right] \]

\[ \frac{1}{ad - bc} \left[\begin{array}{rr} d & -b \\ -c & a \end{array}\right] \]

Inverse Matrices to Solve Systems of Equations

An equation

\[ \begin{array}{c} x + 2y = 4 \\ 3x - 5y = 1 \end{array} \]

can be written in the form

\[ \left[\begin{array}{cc} 1 & 2 \\ 3 & -5 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 4 \\ 1 \end{array}\right] \]

The second matrix \(B = A^{-1}C\). Therefore, \[ B = -\frac{1}{11} \left[\begin{array}{cc} -5 & -2 \\ -3 & 1 \end{array}\right] \left[\begin{array}{c} 4 \\ 1 \end{array}\right] \\ = -\frac{1}{11} \left[\begin{array}{cc} -22 \\ -11 \end{array}\right] = \left[\begin{array}{cc} 2 \\ 1 \end{array}\right] \]

Determinants

Determinants are the scalars of a matrix

The determinant of a 2x2 matrix:

\[ A = ≤ft[\begin{array}{cc} a & b \\ c & d \end{array}\right],

A= ad - bc

\]

Array of Signs and Expansion by Minors

\[ \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right] \]

Minor

\[ a_{11} \left[\begin{array}{cc} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right] \]

3x3 determinant

\[ \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right] \]

\[ a(ei - fh) - b(di - fg) + c(dh - eg) = (aei + bfg + cdh) - (afh - bdi + ceg) \]

Example

\[ A = ≤ft[\begin{array}{ccc} 4 & -3 & 0 \\ 2 & -1 & 2 \\ 1 & 5 & 7 \end{array}\right],

A= 4((-1)(7) - (2)(5)) - (-3)((2)(7) - (2)(1)) + 0

\]

\[ |A| = -32 \]

Cramer's Rule

\[ x = \frac{D_x}{D}, y = \frac{D_y}{D}, z = \frac{D_z}{D} \]

$$ D_x = ≤ft[\begin{array}{ccc} d_1 & b_1 & c_1
d_2 & b_2 & c_2
d_3 & b_3 & c_3 \right]